Modeling Academic Performance Evaluation Using Hybrid Fuzzy Clustering Techniques
نویسنده
چکیده
Article history: Received 26 January 2014 Received in revised form 10 March 2014 Accepted 12 March 2014 Available online 31 March 2014
منابع مشابه
Academic performance evaluation using soft computing techniques
This article presents a study of academic performance evaluation using soft computing techniques inspired by the successful application of K-means, fuzzy C-means (FCM), subtractive clustering (SC), hybrid subtractive clustering-fuzzy C-means (SC-FCM) and hybrid subtractive clustering-adaptive neuro fuzzy inference system (SC-ANFIS) methods for solving academic performance evaluation problems. M...
متن کاملModeling Academic Performance Evaluation using Fuzzy C-Means Clustering Techniques
In this paper we explore the applicability of Fuzzy C-Means clustering technique to student allocation problem that allocates new students to homogenous groups of specified maximum capacity, and analyze effects of such allocations on the academic performance of students. This paper also presents a Fuzzy set and Regression analysis based rules based Fuzzy Expert System model which is capable of ...
متن کاملModeling Academic Performance Evaluation Using Subtractive Clustering Approach
In this paper, we explore the applicability of Subtractive Clustering Technique (SCT) to student allocation problem that allocates new students to homogenous groups of specified maximum capacity, and analyze effects of such allocations on the academic performance of students. The paper also presents a Fuzzy set, Subtractive Clustering Technique (SCT) and regression analysis based Subtractive Cl...
متن کاملProposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms
In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...
متن کاملA Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach
In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...
متن کامل